Two Studies of Specification Error in Models for Categorical Latent Variables

نویسندگان

  • David Kaplan
  • Sarah Depaoli
چکیده

This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as well as sample reallocation to latent classes. The results show that the clarity of remaining latent classes, as measured by the entropy statistic depends on the number of observations in the omitted latent class—but this statistic is not reliable. Specification error in the latent Markov model focuses on the transition probabilities when a longitudinal Guttman process is incorrectly specified. The findings show that specifying a longitudinal Guttman process that is not true in the population impacts other transition probabilities through the covariance matrix of the logit parameters used to calculate those probabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Determinants of Inflation in Selected Countries

This paper focuses on developing models to study influential factors on the inflation rate for a panel of available countries in the World Bank data base during 2008-2012‎. ‎For this purpose‎, Random effect log-linear and Ordinal logistic models are used for the analysis of continuous and categorical inflation rate variables‎. ‎As the original inflation rate response to variables shows an appar...

متن کامل

به‌کارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر هم‌خطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان

Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...

متن کامل

The Comparison of Two Models for Evaluation of Pre-internship Comprehensive Test: Classical and Latent Trait

Introduction: Despite the widespread use of pre-internship comprehensive test and its importance in medical students’ assessment, there is a paucity of the studies that can provide a systematic psychometric analysis of the items of this test. Thus, the present study sought to assess March 2011 pre-internship test using classical and latent trait models and compare their results. Methods: In th...

متن کامل

Generalized Linear Latent Variable Models for time dependent data

Latent variable models are a fundamental tool for the analysis of multivariate data. The importance of such models is due to the crucial role that latent variables play in many fields, e.g. psychological and educational, socioeconomic, biometric, where often constructs are not directly observable. In these contexts, the different nature of the observable variables often causes theoretical and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011